Sparse Learning Under Regularization Framework: Theory and Applications - Michael R. Lyu - Livres - LAP LAMBERT Academic Publishing - 9783844330304 - 15 avril 2011
Si la couverture et le titre ne correspondent pas, le titre est correct.

Sparse Learning Under Regularization Framework: Theory and Applications

Prix
€ 50,99

Commandé depuis un entrepôt distant

Livraison prévue 6 - 12 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 15 avril 2011
ISBN13 9783844330304
Éditeurs LAP LAMBERT Academic Publishing
Pages 152
Dimensions 226 × 9 × 150 mm   ·   244 g
Langue et grammaire Allemand  

Plus par Michael R. Lyu

Afficher tout