Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models - Stefanos Giakoumatos - Livres - LAP LAMBERT Academic Publishing - 9783838386331 - 26 août 2010
Si la couverture et le titre ne correspondent pas, le titre est correct.

Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models

Prix
€ 66,49

Commandé depuis un entrepôt distant

Livraison prévue 7 - 15 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

The phenomenon of changing variance and covariance is often encountered in financial time series. As a result, during the last years researchers focused on the time-varying volatility models. These models are able to describe the main characteristics of the financial data such as the volatility clustering. In addition, the development of the Markov Chain Monte Carlo Techniques (MCMC) provides a powerful tool for the estimation of the parameters of the time-varying volatility models, in the context of Bayesian analysis. In this thesis, we adopt the Bayesian inference and we propose easy-to-apply MCMC algorithms for a variety of time-varying volatility models. We use a recent development in the context of the MCMC techniques, the Auxiliary variable sampler. This technique enables us to construct MCMC algorithms, which only consist of Gibbs steps. We propose new MCMC algorithms for many univariate and multivariate models. Furthermore, we apply the proposed MCMC algorithms to real data and compare the above models based on their predictive distribution

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 26 août 2010
ISBN13 9783838386331
Éditeurs LAP LAMBERT Academic Publishing
Pages 240
Dimensions 150 × 14 × 226 mm   ·   358 g
Langue et grammaire Anglais