High Dimensional Clustering and Applications of Learning Methods: Non-redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy - Ying Cui - Livres - LAP Lambert Academic Publishing - 9783838300801 - 23 avril 2009
Si la couverture et le titre ne correspondent pas, le titre est correct.

High Dimensional Clustering and Applications of Learning Methods: Non-redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy

Prix
€ 50,99

Commandé depuis un entrepôt distant

Livraison prévue 8 - 16 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

This book is divided into two parts. The first part is about non-redundant clustering and feature selection for high dimensional data. The second part is on applying learning techniques to lung tumor image-guided radiotherapy. In the first part, a new clustering paradigm is investigated for exploratory data analysis: find all non-redundant clustering views of the data. Also a feature selection method is developed based on the popular transformation approach: principal component analysis (PCA). In the second part, machine learning algorithms are designed to aid lung tumor image-guided radiotherapy (IGRT). Specifically, intensive studies are preformed for gating and for directly tracking the tumor. For gating, two methods are developed: (1) an ensemble of templates where the representative templates are selected by Gaussian mixture clustering, and (2) a support vector machine (SVM) classifier with radial basis kernels. For the tracking problem, a multiple- template matching method is explored to capture the varying tumor appearance throughout the different phases of the breathing cycle.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 23 avril 2009
ISBN13 9783838300801
Éditeurs LAP Lambert Academic Publishing
Pages 160
Dimensions 225 × 9 × 150 mm   ·   256 g
Langue et grammaire Allemand  

Plus par Ying Cui

Afficher tout