Approximate Solution of Non-Symmetric Generalized Eigenvalue Problems and Linear Matrix Equations on Hpc Platforms - Martin Koehler - Livres - Logos Verlag Berlin GmbH - 9783832554347 - 20 janvier 2022
Si la couverture et le titre ne correspondent pas, le titre est correct.

Approximate Solution of Non-Symmetric Generalized Eigenvalue Problems and Linear Matrix Equations on Hpc Platforms


Recevez un courriel lorsque l'article est disponible
Avez-vous un profil ? Connectez-vous
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

The solution of the generalized eigenvalue problem is one of the computationally most challenging operations in the field of numerical linear algebra. A well known algorithm for this purpose is the QZ algorithm. Although it has been improved for decades and is available in many software packages by now, its performance is unsatisfying for medium and large scale problems on current computer architectures. In this thesis, a replacement for the QZ algorithm is developed. The design of the new spectral divide and conquer algorithms is oriented towards the capabilities of current computer architectures, including the support for accelerator devices. The thesis describes the co-design of the underlying mathematical ideas and the hardware aspects. Closely connected with the generalized eigenvalue value problem, the solution of Sylvester-like matrix equations is the concern of the second part of this work. Following the co-design approach, introduced in the first part of this thesis, a flexible framework covering (generalized) Sylvester, Lyapunov, and Stein equations is developed. The combination of the new algorithms for the generalized eigenvalue problem and the Sylvester-like equation solves problems within an hour, whose solution took several days incorporating the QZ and the Bartels-Stewart algorithm.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 20 janvier 2022
ISBN13 9783832554347
Éditeurs Logos Verlag Berlin GmbH
Pages 241
Dimensions 150 × 220 × 10 mm   ·   3,76 kg
Langue et grammaire Anglais  

Plus par Martin Koehler

Afficher tout