Faites connaître cet article à vos amis:
High-Dimensional Covariance Matrix Estimation: An Introduction to Random Matrix Theory - SpringerBriefs in Applied Statistics and Econometrics Aygul Zagidullina 1st ed. 2021 edition
High-Dimensional Covariance Matrix Estimation: An Introduction to Random Matrix Theory - SpringerBriefs in Applied Statistics and Econometrics
Aygul Zagidullina
It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way.
115 pages, 26 Illustrations, color; XIV, 115 p. 26 illus. in color.
| Médias | Livres Paperback Book (Livre avec couverture souple et dos collé) |
| Validé | 30 octobre 2021 |
| ISBN13 | 9783030800642 |
| Éditeurs | Springer Nature Switzerland AG |
| Pages | 115 |
| Dimensions | 155 × 233 × 10 mm · 210 g |
| Langue et grammaire | Anglais |
Voir tous les Aygul Zagidullina ( par ex. Paperback Book )
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier