Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining - Tomas Arredondo - Livres - LAP Lambert Academic Publishing - 9783838337104 - 21 juin 2010
Si la couverture et le titre ne correspondent pas, le titre est correct.

Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining 1st edition

Prix
€ 66,49

Commandé depuis un entrepôt distant

Livraison prévue 8 - 16 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

This work refers to studies on information-theoretic (IT) aspects of data-sequence patterns and developing discriminant algorithms that enable distinguishing the features of underlying sequence patterns having characteristic, inherent stochastical attributes. Considered in this research are specific details on information-theoretics and entropy considerations vis-á-vis sequence patterns (having stochastical attributes) such as DNA sequences of molecular biology. Applying information-theoretic concepts (essentially in Shannon?s sense), the following distinct sets of metrics are developed and applied in the algorithms developed for data-sequence pattern-discrimination applications: (i) Divergence or cross-entropy algorithms of Kullback-Leibler type and of general Czizár class; (ii) statistical distance measures; (iii) ratio-metrics; (iv) Fisher type linear-discriminant measure; (v) complexity metric based on information redundancy; and a Fuzzy logic based measure. Relevant algorithms are used to test DNA sequences of human and some bacterial organisms.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 21 juin 2010
ISBN13 9783838337104
Éditeurs LAP Lambert Academic Publishing
Pages 264
Dimensions 225 × 15 × 150 mm   ·   411 g
Langue et grammaire Allemand