New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation - Xavier Esquivel - Livres - LAP LAMBERT Academic Publishing - 9783659184963 - 14 juillet 2012
Si la couverture et le titre ne correspondent pas, le titre est correct.

New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation

Prix
€ 50,99

Commandé depuis un entrepôt distant

Livraison prévue 8 - 16 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

In this work we deal with the design of archive based multi-objective evolutionary algorithms (MOEAs) for the numerical treatment of multi objective optimization problems (MOPs). In particular, we design two generational operators­ one mutation and one crossover operator that are tailored to a class of archiving strategies and propose a new evolutionary strategy. Furthermore, we investigate here two widely used indicators for the evaluation of Multi-objective Evolutionary Algorithms, the Generational Distance (GD) and the Inverted Generational Distance (IGD), with respect to the properties of ametric. We de?ne a new performance indicator, ?p, which can be viewed as an ?averaged Hausdor? distance? between the outcome set and the Pareto front and which is composed of (slight modi?cations of) the well-known indicators Generational Distance (GD) and Inverted Generational Distance (IGD). We will discuss theoretical properties of ?p (as well as for GD and IGD) such as the metric properties and the compliance with state-of-the-art multi-objective evolutionary algorithms (MOEAs).

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 14 juillet 2012
ISBN13 9783659184963
Éditeurs LAP LAMBERT Academic Publishing
Pages 124
Dimensions 150 × 7 × 226 mm   ·   203 g
Langue et grammaire Allemand