Sparse Representation of High Dimensional Data for Classification: Research and Experiments - Salman Siddiqui - Livres - VDM Verlag Dr. Müller - 9783639132991 - 5 mars 2009
Si la couverture et le titre ne correspondent pas, le titre est correct.

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

Prix
€ 51,49

Commandé depuis un entrepôt distant

Livraison prévue 12 - 21 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

In this book you will find the use of sparse Principal Component Analysis (PCA) for representing high dimensional data for classification. Sparse transformation reduces the data volume/dimensionality without loss of critical information, so that it can be processed efficiently and assimilated by a human. We obtained sparse representation of high dimensional dataset using Sparse Principal Component Analysis (SPCA) and Direct formulation of Sparse Principal Component Analysis (DSPCA). Later we performed classification using k Nearest Neighbor (kNN) Method and compared its result with regular PCA. The experiments were performed on hyperspectral data and various datasets obtained from University of California, Irvine (UCI) machine learning dataset repository. The results suggest that sparse data representation is desirable because sparse representation enhances interpretation. It also improves classification performance with certain number of features and in most of the cases classification performance is similar to regular PCA.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 5 mars 2009
ISBN13 9783639132991
Éditeurs VDM Verlag Dr. Müller
Pages 64
Dimensions 150 × 220 × 10 mm   ·   104 g
Langue et grammaire Anglais