Automated Semantic Analysis of Schematic Data: Learning-based Techniques for Scalable and Automated Semantic Understanding of Template Generated Schematic Web Content - Saikat Mukherjee - Livres - VDM Verlag - 9783639026740 - 29 mai 2008
Si la couverture et le titre ne correspondent pas, le titre est correct.

Automated Semantic Analysis of Schematic Data: Learning-based Techniques for Scalable and Automated Semantic Understanding of Template Generated Schematic Web Content

Prix
€ 51,49

Commandé depuis un entrepôt distant

Livraison prévue 12 - 21 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

Content in numerous data sourcesare not directly amenable to machine processing. This book describes techniques for automated semantic analysis ofschematic content which are characterized by being populated from backend databases. Starting with a seed set of hand-labeled instances of semanticconcepts in a set of HTML documents, a technique is devised thatbootstraps an annotation process for automatic identification ofconcept instances present in other documents. The technique exploitsthe observation that semantically related items in schematic HTMLdocuments exhibit consistency in presentation style and spatiallocality to learn statistical concept models, using light-weightsemantic features. This model directs the annotation of diverse Web documents possessing similar content semantics. The power of these techniques is demonstrated through applications developed for real-life problems that includeaudio-based assistive browsing for non-visual Web access, focused browsing on handhelds with semantic bookmarks, text data cleaning, and accurate identification of remote homologs of biological protein sequences.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 29 mai 2008
ISBN13 9783639026740
Éditeurs VDM Verlag
Pages 110
Dimensions 150 × 220 × 10 mm   ·   154 g
Langue et grammaire Anglais  

Plus par Saikat Mukherjee

Afficher tout