Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences - Ovidiu Calin - Livres - Springer Nature Switzerland AG - 9783030367237 - 14 février 2021
Si la couverture et le titre ne correspondent pas, le titre est correct.

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

Prix
€ 62,99

Commandé depuis un entrepôt distant

Livraison prévue 6 - 12 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

Également disponible en tant que :

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.

This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

 

 



760 pages, 35 Illustrations, color; 172 Illustrations, black and white; XXX, 760 p. 207 illus., 35 i

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 14 février 2021
ISBN13 9783030367237
Éditeurs Springer Nature Switzerland AG
Pages 760
Dimensions 176 × 254 × 48 mm   ·   1,45 kg
Langue et grammaire Allemand  

Plus par Ovidiu Calin

Afficher tout