Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability - Trevor Hastie - Livres - Taylor & Francis Inc - 9781498712163 - 7 mai 2015
Si la couverture et le titre ne correspondent pas, le titre est correct.

Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability 1er édition

Prix
€ 125,49

Commandé depuis un entrepôt distant

Livraison prévue 31 déc. - 2 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

Également disponible en tant que :

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ?1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


367 pages, 99 colour illustrations, 11 colour tables

Médias Livres     Hardcover Book   (Livre avec dos et couverture rigide)
Validé 7 mai 2015
ISBN13 9781498712163
Éditeurs Taylor & Francis Inc
Pages 367
Dimensions 163 × 244 × 22 mm   ·   742 g
Langue et grammaire Anglais