Multi-Class Classification for Identifying JPEG Steganography Embedding Methods - Benjamin M Rodriguez - Livres - BiblioBazaar, LLC - 9781288311934 - 19 novembre 2012
Si la couverture et le titre ne correspondent pas, le titre est correct.

Multi-Class Classification for Identifying JPEG Steganography Embedding Methods

Prix
€ 55,49

Commandé depuis un entrepôt distant

Livraison prévue 15 - 26 janv. 2026
Les cadeaux de Noël peuvent être échangés jusqu'au 31 janvier
Ajouter à votre liste de souhaits iMusic

Publisher Marketing: Over 725 steganography tools are available over the Internet, each providing a method for covert transmission of secret messages. This research presents four steganalysis advancements that result in an algorithm that identifies the steganalysis tool used to embed a secret message in a JPEG image file. The algorithm includes feature generation, feature preprocessing, multi-class classification and classifier fusion. The first contribution is a new feature generation method which is based on the decomposition of discrete cosine transform (DCT) coefficients used in the JPEG image encoder. The generated features are better suited to identifying discrepancies in each area of the decomposed DCT coefficients. Second, the classification accuracy is further improved with the development of a feature ranking technique in the preprocessing stage for the kernel Fisher's discriminant (KFD) and support vector machines (SVM) classifiers in the kernel space during the training process. Third, for the KFD and SVM two-class classifiers a classification tree is designed from the kernel space to provide a multi-class classification solution for both methods. Fourth, by analyzing a set of classifiers, signature detectors, and multi-class classification methods a classifier fusion system is developed to increase the detection accuracy of identifying the embedding method used in generating the steganography images.

Médias Livres     Paperback Book   (Livre avec couverture souple et dos collé)
Validé 19 novembre 2012
ISBN13 9781288311934
Éditeurs BiblioBazaar, LLC
Pages 194
Dimensions 247 × 186 × 16 mm   ·   384 g